Jan Willmann, Benedict Wilmes, Kathrin Becker, Dieter Drescher

Hybrid Hyrax Direct

Eine neue Technik zur maxillären Expansion und Protraktion

INDIZES

Hybrid Hyrax Direct, maxilläre Expansion, maxilläre Protraktion, "Appliance First", "TADs First"

ZUSAMMENFASSUNG

Die Hybrid Hyrax hat sich mittlerweile weltweit etabliert, nicht nur zur reinen Oberkieferexpansion, sondern auch im Rahmen einer frühen Klasse-III-Behandlung mit Gesichtsmaske oder Mentoplate. Während bei der konventionellen Hybrid Hyrax zunächst zwei Miniimplantate inseriert werden ("TADs First"), gibt es mittlerweile das Konzept, zunächst die GNE-Apparatur einzusetzen und erst im zweiten Schritt die Miniimplantate ("Appliance First"). Zu diesem Zweck wird eine neue Kopplungsmöglichkeit mittels eines Spezialgewindes vorgestellt, das eine winkelstabile Kopplung neuartiger Miniimplantate mit kieferorthopädischen Apparaturen ermöglicht. Anhand eines Patientenbeispiels wird diese neue Technik zur simultanen Gaumennahterweiterung und maxillären Protraktion demonstriert.

Manuskripteingang: 13.05.2020, Annahme: 20.05.2020

Einleitung

Die Gaumennahterweiterung (GNE) gilt als optimales kieferorthopädisches Verfahren, wenn eine skelettale Expansion der Maxilla gewünscht ist. Diese Methode wurde zum ersten Mal 1860 von Angell¹ beschrieben. Da die Kräfte bei der konventionellen GNE über Ankerzähne auf die skelettalen Strukturen übertragen werden, gilt die Verteilung der Kräfte auf eine möglichst große Anzahl von Zähnen sowie ein abgeschlossenes Wurzelwachstum als unabdingbar. Trotz dieser Überlegungen wird von Nebenwirkungen wie Bukkalkippungen, Gingivarezessionen und Wurzelresorptionen im Seitenzahngebiet berichtet²-5. Mit dem Ziel, dentale Nebenwirkungen zu vermeiden, wurden rein knochengetragene Distrak-

toren (TPD Distraktor) entwickelt^{6,7}. Allerdings sind diese Miniplatten-getragenen GNE-Geräte chirurgisch recht invasiv, benötigen eine Lappenpräparation und haben ein hohes Risiko der Zahnschädigung8. Um die Invasivität zu reduzieren, werden heute Miniimplantate zur skelettalen Verankerung bevorzugt. Als primäre Insertionsregion für palatinale (Mini-) Implantate gilt die sogenannte T-Zone9,10 posterior der dritten Gaumenfalten. Die Hybrid Hyrax^{11,12}, verankert auf zwei Miniimplantaten im anterioren Gaumen und zwei (Milch-)Molaren, hat sich mittlerweile weltweit etabliert, nicht nur zur reinen Oberkieferexpansion, sondern auch im Rahmen einer frühen Klasse-III-Behandlung mit Gesichtsmaske oder Mentoplate^{13,14} (Abb. 1). Die Minimierung dentaler Nebenwirkungen wie Kippungen und Auf-

Abb. 1 Prinzip der Hybrid Hyrax mit der hybriden Abstützung auf zwei Miniimplantaten und zwei Zähnen zur Gaumennahterweiterung (hier digitales Design, Fa. Tadmann, Gunningen).

wanderungen konnte in multiplen Studien nachgewiesen werden¹⁴⁻¹⁷. Vorteile ergeben sich sowohl in der transversalen Dimension bei der Gaumennahterweiterung^{16,18} als auch in der sagittalen Dimension im Rahmen der frühen Klasse-III-Behandlung^{14,19,20}. Aufgrund der höheren skelettalen Effektivität der Hybrid Hyrax wird beispielsweise eine stärkere Erweiterung der Nasen-Luftpassage erreicht, verglichen mit einer konventionellen zahngetragenen GNE-Apparatur²¹. Interessanterweise wird die Hybrid Hyrax im Vergleich mit einer konventionellen GNE-Apparatur trotz des Einbringens von zwei Miniimplantaten von Patienten als weniger belastend oder schmerzhaft bewertet²².

Zur effektiven Oberkieferprotraktion kann die Gesichtsmaske oder die Mentoplate mit einer Gaumennahterweiterung kombiniert werden²³, da durch die GNE die Mittelgesichtssuturen stimuliert werden²⁴. Liou et al. haben 2005 das sogenannte Alt-RAMEC25-Protokoll eingeführt, um diesen Effekt der Suturen-Stimulation über eine längere Zeit auszunutzen und somit das Ausmaß der Oberkieferprotraktion zu erhöhen. Beim Alt-RAMEC-Protokoll wird der Oberkiefer in der ersten Woche expandiert, um in der zweiten Woche wieder komprimiert zu werden (durch Zurückstellen der Expansionsschraube), in der dritten Woche wird wieder expandiert usw. Dieses wechselnde Expandieren-Komprimieren wird über acht Wochen fortgeführt¹³.

Bei der konventionellen Hybrid Hyrax werden zunächst zwei Miniimplantate inseriert, anschließend erfolgt eine Abformung oder Scan, um die Apparatur im Labor herstellen zu können. In den letzten Jahren werden auch vermehrt Insertionsschablonen verwendet, auf diese Art und Weise kann die Apparatur schon im Vorfeld angefertigt werden. Die Vorteile bestehen darin, dass eine optimale Planbarkeit des Insertionsortes möglich ist und dass Miniimplantate und Gerät in nur einem Termin eingesetzt werden können^{26,27}.

Sowohl beim konventionellen Vorgehen mit Abformung oder Scan als auch bei der Verwendung von Insertionsguides werden zuerst die Miniimplantate eingesetzt und erst anschließend das kieferorthopädische Gerät auf diesen Minimplantaten befestigt. Dieses Vorgehen kann als "TADs First" bezeichnet werden. Es kann jedoch vorkommen, dass die kieferorthopädische Apparatur aufgrund von Ungenauigkeiten im Prozess (Abformung, Herstellung etc.) nicht optimal passt und daher nicht eingesetzt werden kann.

Daher hat mittlerweile das Konzept Interesse gefunden, zunächst die GNE-Apparatur einzusetzen, um anschließend²⁻⁴ Miniimplantate zur knöchernen Verankerung hinzuzufügen²⁸ (MARPE). Dieses Vorgehen kann als "Appliance First"-Konzept bezeichnet werden. Nachteilig erscheint bei dem klassischen MARPE-Expander jedoch die posterior paramediane Insertion der Miniimplantate in einer Region mit nur wenig Knochenhöhe. Als weiterer Nachteil erweist sich die nicht kippstabile Kopplung zwischen den Miniimplantaten und der GNE-Apparatur. Aus diesem Grund wird nun eine neue Kopplungsmöglichkeit mittels eines speziellen doppelläufigen Innengewindes vorgestellt, das eine winkelstabile Kopplung des Miniimplantates mit der kieferorthopädischen Apparatur ermöglicht. Winkelstabile Verschraubungen erlauben es, das Miniimplantat auch mit einer Fehlangulation von bis zu 15 Grad einzusetzen, ohne dass die Stabilität darunter leidet. Diese Eigenschaft ermöglicht es, die Miniimplantate erst nach dem Einsetzen des kieferorthopädischen Gerätes zu inserieren und gleichzeitig eine kippstabile Kopplung zu erzielen. Damit steht eine neue Möglichkeit zur Verfügung, das "Appliance First"-Prinzip klinisch umzusetzen (Abb. 2a und b, Benefit Direct, Fa. PSM Medical Solutions, Gunningen).

Abb. 2a und b Kopplung vom Miniimplantat zur kieferorthopädischen Apparatur: Die konventionelle Kopplung erfolgt mittels eines Abutments und eines Fixierschräubchens (a), das Benefit Direct Miniimplantat hat ein unteres intraossäres Gewinde und ein oberes kurzes Gewinde, das in den Benefit Direct-Ring eingeschraubt wird (b). Auch wenn das Minimplantat nicht exakt axial eingeschraubt wird, kommt es zu einer stabilen Verbindung.

Klinisches Beispiel

Das klinische Prozedere zur simultanen Gaumennahterweiterung und sagittalen Oberkieferprotraktion unter Anwendung des "Appliance First"-Prinzips wird anhand der kieferorthopädischen Therapie einer 11-jährigen Patientin gezeigt (Abb. 3a bis j). Nach erfolgter Primärdiagnostik und ausführlicher Beratung der Eltern und der Patientin wurde im Unterkiefer eine Mentoplate zur Korrektur der Klasse III eingesetzt. Zudem wurde der Oberkiefer zur Herstellung einer Hybrid Hyrax gescannt. Nach digitaler Planung der Apparatur wurde diese im Lasersinterverfahren hergestellt (Fa. Tadman, Gunningen)²⁹. Vor dem Einsetzen der Hybrid Hyrax wurde eine Lokalanästhesie im anterioren Gaumen durchgeführt. Anschließend erfolgte die Befestigung der GNE-Apparatur an den ersten Molaren mit einem lichthärtenden Glasionomerzement (Abb. 4a, Band Lok, Fa. G&H Orthodontics, Franklin, IN, USA). Die Benefit Direct Miniimplantate (2 x 9 mm, Fa. PSM, Gunningen) wurden nun durch die Direct Ringe inseriert. Es stellte sich als klinisch empfehlenswert heraus, zunächst beide Miniimplantate fast vollständig zu inserieren, um abschließend erst die finalen Umdrehungen zur festen Kopplung mit den Ringen zu erreichen (Abb. 4b und c). Nach dem Einsetzten der Hybrid Hyrax wurde die Patientin angewiesen, die GNE-Dehnschraube täglich nach dem Alt-RAMEC-Protokoll über acht

Wochen zu aktivieren (drei Vierteldrehungen morgens und zwei Vierteldrehungen abends). Gleichzeitig sollten intermaxilläre Klasse-III-Gummizüge (4.5 oz) zur Mentoplate getragen werden (Abb. 5a bis e). Zwei Monate nach dem Behandlungsbeginn waren das klassische Trema sowie die Überstellung des Kreuzbisses zu erkennen (Abb. 6a bis e). Nach weiteren zwei Monaten war auch die gewünschte Protraktion des Oberkiefers erfolgreich erreicht (Abb. 7a bis g und 8, Tab. 1).

Tab. 1 Darstellung der Werte vor und nach der Behandlung.

	Vorher	Nachher
NSBa	128,8°	128,9°
NL-NSL	5,8°	6,7°
ML-NSL	35,1°	36,7°
ML-NL	29,3°	29,9°
SNA	75,3°	80,3°
SNB	77,6°	78,0°
ANB	-2,3°	2,2°
Wits	-1,7 mm	1,9 mm
U1-NL	104,0°	107,4°
L1-ML	80,6°	80,5°
U1-L1	146,0°	142,1°
Overjet	-0,8 mm	3,3 mm
Overbite	-0,2 mm	-0,4 mm

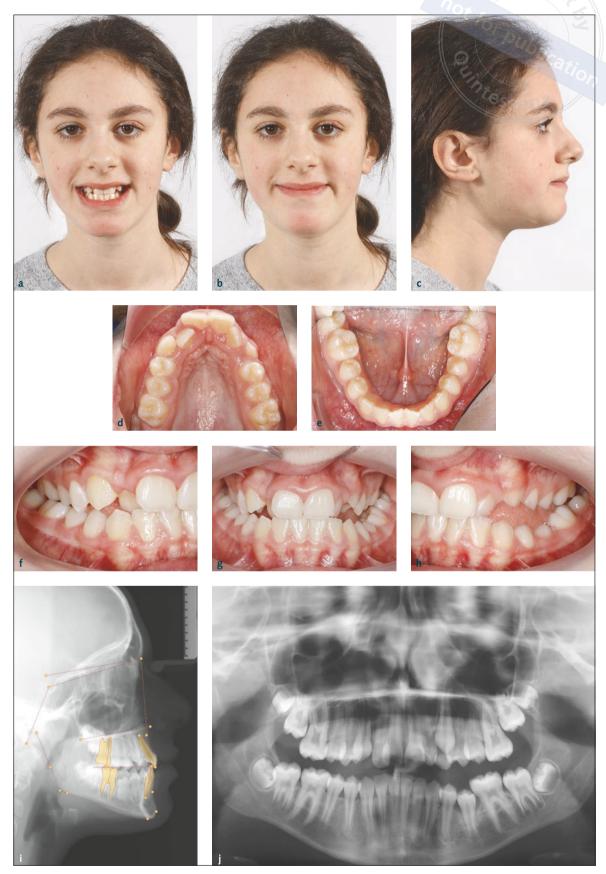


Abb. 3a bis j Präoperative Situation bei der 11-jährigen Patientin mit einem transversalen und sagittalen Oberkieferdefizit.

Abb. 4a bis c Einbringen der Hybrid Hyrax mittels der Direkttechnik.

Abb. 5a bis e Beginn der simultanen Gaumennahterweiterung und Protraktion des Oberkiefers.

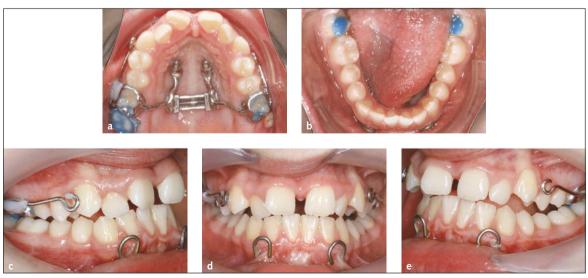
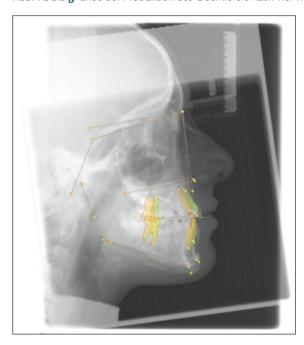



Abb. 6a bis e Intraorale Situation nach siebenwöchiger Alt-RAMEC-Phase.

 ${f Abb.}$ 7a ${f bis}$ ${f g}$ Ende der Protraktion des Oberkiefers nach vier Monaten.

Abb. 8 Überlagerung der Fernröntgenseitenbilder vor und nach der Oberkieferprotraktion.

Vergleich der Methoden

Vorteile "Appliance First"-Methode (direct)

- Eine Neuanfertigung oder aufwendige Anpassung der Apparatur aufgrund mangelnder Passgenauigkeit kann vermieden werden.
- Miniimplantate und kieferorthopädisches Gerät können in nur einem Termin eingesetzt werden. Die Abormung nach Insertion von Miniimplantaten entfällt.
- Die Direct-Ringe geben eine gute Orientierung für den optimalen Insertionsort.

Vorteile "TADs First"-Methode (konventionell):

- Miniimplantate können konsekutiv für mehrere Geräte genutzt werden, zum Beispiel zunächst GNE-Apparatur, anschließend Distalisierungsgerät.
- Bei Defekten oder gewünschten Modifikationen der Apparatur kann diese einfach entfernt und auf den Miniimplantaten wieder befestigt werden.

Literatur

- Angell EC. Treatment of irregularities of the permanent or adult teeth. Dental Cosmos 1860;1:540-544. 599-601.
- Barber AF, Sims MR. Rapid maxillary expansion and external root resorption in man: a scanning electron microscope study. Am J Orthod 1981;79:630–652.
- 3. Carmen M, Marcella P, Giuseppe C, Roberto A. Periodontal evaluation in patients undergoing maxillary expansion. J Craniofac Surg 2000;11:491–494.
- Garib DG, Henriques JF, Janson G, de Freitas MR, Fernandes AY. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: a computed tomography evaluation. Am J Orthod Dentofacial Orthop 2006;129:749–758.
- Schuster G, Borel-Scherf I, Schopf PM. Frequency of and complications in the use of RPE appliances--results of a survey in the Federal State of Hesse, Germany. J Orofac Orthop 2005;66:148–161.
- Koudstaal MJ, van der Wal KG, Wolvius EB, Schulten AJ. The Rotterdam Palatal Distractor: introduction of the new bone-borne device and report of the pilot study. Int J Oral Maxillofac Surg 2006;35:31–35.
- Mommaerts MY. Transpalatal distraction as a method of maxillary expansion. Br J Oral Maxillofac Surg 1999;37: 268–272.
- Verstraaten J, Kuijpers-Jagtman AM, Mommaerts MY, Berge SJ, Nada RM, Schols JG et al. A systematic review of the effects of bone-borne surgical assisted rapid maxillary expansion. J Craniomaxillofac Surg 2010;38: 166–174.

- Wilmes B, Ludwig B, Vasudavan S, Nienkemper M, Drescher D. The T-Zone: Median vs. Paramedian Insertion of Palatal Mini-Implants. J Clin Orthod 2016;50:543–551.
- Becker K, Unland J, Wilmes B, Tarraf NE, Drescher D. Is there an ideal insertion angle and position for orthodontic mini-implants in the anterior palate? A CBCT study in humans. Am J Orthod Dentofacial Orthop 2019;156: 345–354.
- Ludwig B, Baumgaertel S, Zorkun B, et al. Application of a new viscoelastic finite element method model and analysis of miniscrew-supported hybrid hyrax treatment. Am J Orthod Dentofacial Orthop 2013;143:426–435.
- 12. Wilmes B, Nienkemper M, Drescher D. Application and effectiveness of a mini-implant- and tooth-borne rapid palatal expansion device: the hybrid hyrax. World J Orthod 2010;11:323–330.
- 13. Wilmes B, Ngan P, Liou EJ, Franchi L, Drescher D. Early class III facemask treatment with the hybrid hyrax and Alt-RAMEC protocol. J Clin Orthod 2014;48:84–93.
- Nienkemper M, Wilmes B, Franchi L, Drescher D. Effectiveness of maxillary protraction using a hybrid hyraxfacemask combination: A controlled clinical study. Angle Orthod 2015;85:764–770.
- Suzuki H, Moon W, Previdente LH, Suzuki SS, Garcez AS, Consolaro A. Miniscrew-assisted rapid palatal expander (MARPE): the quest for pure orthopedic movement. Dental Press J Orthod 2016;21:17–23.
- Kayalar E, Schauseil M, Kuvat SV, Emekli U, Firatli S. Comparison of tooth-borne and hybrid devices in surgically assisted rapid maxillary expansion: A randomized clinical cone-beam computed tomography study. J Craniomaxillofac Surg 2016;44:285–293.
- 17. Hourfar J, Kinzinger GS, Ludwig B, Spindler J, Lisson JA. Differential treatment effects of two anchorage systems for rapid maxillary expansion: a retrospective cephalometric study. J Orofac Orthop 2016;77:314–324.
- Moon HW, Kim MJ, Ahn HW, Kim SJ, Kim SH, Chung KR et al. Molar inclination and surrounding alveolar bone change relative to the design of bone-borne maxillary expanders: A CBCT study. Angle Orthod 2020;90: 13–22.
- Ngan P, Wilmes B, Drescher D, Martin C, Weaver B, Gunel E. Comparison of two maxillary protraction protocols: toothborne versus bone-anchored protraction facemask treatment. Prog Orthod 2015;16:26.
- Moon W, Wu KW, MacGinnis M, Sung J, Chu H, Youssef G et al. The efficacy of maxillary protraction protocols with the micro-implant-assisted rapid palatal expander (MARPE) and the novel N2 mini-implant-a finite element study. Prog Orthod 2015;16:16.
- Bazargani F, Magnuson A, Ludwig B. Effects on nasal airflow and resistance using two different RME appliances: a randomized controlled trial. Eur J Orthod 2018;40: 281–284.
- 22. Feldmann I, Bazargani F. Pain and discomfort during the first week of rapid maxillary expansion (RME) using two different RME appliances: A randomized controlled trial. Angle Orthodontist 2017;87:391–396.
- 23. Baccetti T, McGill JS, Franchi L, McNamara JA, Jr., Tollaro I. Skeletal effects of early treatment of Class III malocclusion with maxillary expansion and face-mask therapy. Am J Orthod Dentofacial Orthop 1998;113:333–343.
- 24. Jager A, Braumann B, Kim C, Wahner S. Skeletal and dental effects of maxillary protraction in patients with angle class III malocclusion. A meta-analysis. J Orofac Orthop 2001;62:275–284.
- 25. Liou EJ. Effective maxillary orthopedic protraction for growing Class III patients: a clinical application simulates distraction osteogenesis. Prog Orthod 2005;6:154–171.
- Wilmes B, Vasudavan S, Drescher D. CAD-CAM-fabricated mini-implant insertion guides for the delivery of a distalization appliance in a single appointment. Am J Orthod Dentofacial Orthop 2019;156:148–156.

- 27. De Gabriele O, Dallatana G, Riva R, Vasudavan S, Wilmes B. The easy driver for placement of palatal mini-implants and a maxillary expander in a single appointment. J Clin Orthod 2017;51:728–737.
- 28. Carlson C, Sung J, McComb RW, Machado AW, Moon W. Microimplant-assisted rapid palatal expansion appliance to
- orthopedically correct transverse maxillary deficiency in an adult. Am J Orthod Dentofacial Orthop 2016;149:716–728.
- Graf S, Vasudavan S, Wilmes B. CAD-CAM design and 3-dimensional printing of mini-implant retained orthodontic appliances. Am J Orthod Dentofacial Orthop 2018;154: 877–882.

Hybrid Hyrax Direct: A new technique for maxillary expansion and contraction

KEY WORDS

Hybrid Hyrax Direct, maxillary expansion, maxillary protraction, appliance first, TADs first

ABSTRACT

The Hybrid Hyrax has now become established worldwide, not only for pure maxillary expansion, but also as part of an early Class III treatment with a face mask or Mentoplate. Conventionally, two mini implants or temporary anchorage devices (TADs) are inserted initially (TADs first). Now, the idea has been presented to place the appliance first and insert the mini implants as a second step (appliance first). For this purpose, a new coupling option using a special thread is presented, which enables the angle-stable coupling of novel mini implants with orthodontic appliances. This new technique for simultaneous palatal expansion and maxillary protraction will be demonstrated using a patient example.

Jan Hinrich Willmann

Jan Hinrich Willmann

Dr. med. dent. Poliklinik für Kieferorthopädie Universitätsklinikum Düsseldorf Moorenstr. 5 40225 Düsseldorf

Benedict Wilmes

Prof. Dr. med. dent. Poliklinik für Kieferorthopädie Universitätsklinikum Düsseldorf Moorenstr. 5 40225 Düsseldorf

Kathrin Becker

Dr. med. dent.
Poliklinik für Kieferorthopädie
Universitätsklinikum Düsseldorf
Moorenstr. 5
40225 Düsseldorf

Dieter Drescher

Prof. Dr. med. dent. Poliklinik für Kieferorthopädie Universitätsklinikum Düsseldorf Moorenstr. 5 40225 Düsseldorf

Korrespondenzadresse: Prof. Dr. Benedict Wilmes, E-Mail: wilmes@med.uni-duesseldorf.de